Mimosa pigra

Mimosa pigra
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Fabales
Family: Fabaceae
Subfamily: Mimosoideae
Genus: Mimosa
Species: M. pigra
Binomial name
Mimosa pigra
L.

Mimosa pigra (Giant Sensitive Tree) (pigra = lazy,slow), is an invasive species of the genus Mimosa, in the family Fabaceae. It is native to the Neotropics, but has been listed as one of the world's 100 worst invasive species,[1][2] and has been documented in: Australia, Cambodia, Dominican Republic, Ghana, Guinea, Indonesia, Kenya, Malaysia, Papua New Guinea, South Africa, Sri Lanka, Swaziland, Tanzania, Thailand, Uganda, Zambia, United States, and Viet Nam (Vietnam). It forms dense, thorny impenetrable thickets particularly in wet areas.

In the late 1960s, small infestations of Mimosa pigra were identified along the banks of the Adelaide River in the Northern Territory, Australia. Action was taken by the N.T. Agriculture Branch to exterminate it by spraying with Tordon, which was promising to achieve eradication until the N.T government discontinued the work allowing the weed to spread widely and become the N.T's and possibly Australia's worst weed problem.

Contents

Introduction

The genus Mimosa (Mimosaceae) contains 400-450 species, which are mostly native to South America. Mimosa pigra is a woody invasive shrub that originates from tropical America and has now become widespread throughout the tropics.[3] In Australia, Mimosa pigra is currently restricted to the Northern Territory where it infests approximately 80,000 hectares of coastal floodplain. Mimosa pigra is one of Australia’s worst environmental weeds.[4]

Name

Mimosa pigra was first identified by Linnaeus,[5] who also named a separate species Mimosa asperata, on the basis of its different leaf morphology. Mimosa pigra was described as having an erect prickle between the pinnae and Mimosa asperata as having prickles in opposite pairs between the pinnae.[6] Further research showed that both leaf forms can occur on the same plant, and consequently both species were united under the name Mimosa asperata asperata, and later on, renamed Mimosa pigra. The scientific name remains Mimosa pigra. In Australia, the common name is mimosa or giant sensitive plant.[3] Other common names include: bashful plant, catclaw mimosa, black mimosa.[7]

Description

Mimosa pigra is a leguminous shrub, which can reach up to 6m in height.[3] The stem is greenish in young plants but becomes woody as the plant matures.[8] It is armed with broad-based prickles up to 7mm long.[3] The leaves are bright green and bipinnate, consisting of a central prickly rachis 20 to 25 cm long with up to 16 pairs of pinnae 5 cm long, each divided into pairs of leaflets 3 to 8 mm long. Leaves are sensitive and fold up when touched and at nightfall.[3][7] Flowers are mauve or pink, born in tight, subglobose pedunculate heads 1 cm in diameter, each containing approximately 100 flowers. Each flower head produces a cluster of 10 to 20 seapods, which then mature and break into segments, each containing an oblong shaped seed. Hairs on the segments allow them to float on water and stick to hair or clothing, hence aiding in dispersal.[7] Ripe seeds are light brown to brown or olive green.[3] Mimosa is hard seeded. Seeds can survive at least 23 years on sandy soils, but seed viability decreases more rapidly on clay soils.[4] Mimosa pigra can germinate year round if the soil is moist but not flooded. However, most germination takes place at the start and end of the wet season. Growth in seedling is rapid, and flowering occurs between 4 and 12 months after germination.[8] The process from flower bud to ripe seed takes about five weeks.[3]

Related plants

Mimosa pigra is closely related to Mimosa pudica (common sensitive plant). It can be distinguished from Mimosa pudica by its large size, large pods (6 to 8 cm long as opposed to 2.5 cm long) and leaves, which have 6 to 16 pairs of pinnae as opposed to 1 to 2 pairs on Mimosa pudica leaves.[3][7] Mimosa pudica is also declared a noxious weed in the Northern Territory of Australia.[7]
Furthermore, in Australia, Mimosa pigra can also be confused with Leucaena leucocephala (coffee bush), Aeschynomeme species and Sesbania species, but can be distinguished from this plants by its sensitive leaves, prickles and mauve flowers.[3][7]

History in Australia

Mimosa pigra was probably introduced in Australia at the Darwin Botanic Gardens in the 20 years prior to 1891, either accidentally in seed samples or as a curiosity, because of its sensitive leaves.[9] Its spread around Darwin over the next 60 years was not particularly conspicuous, until a large infestation was discovered in 1952 at Adelaide River, 100 km south of Darwin.[3][8] By 1968, it had spread downstream on the Adelaide River to the Marrakai Crossing, and by 1975 had reached the Arnhem Highway bridge.[3] The plant was then well placed to take over the vast floodplains of the Adelaide River. Being low in palatability, it was assisted in establishment by high densities of feral water buffalo (Bubalus Bubalis (L.)), which were heavily overgrazing the floodplains. Moreover, its seed can float, which aided its rapid spread.[3][4] The population increased dramatically. During the early to mid 1980s, other rivers were colonized, but the rate of establishment has slowed since the late 1980s.[10]

Distribution

Global distribution

Mimosa pigra is native to tropical America, where it occurs in a wide belt extending form Mexico through Central America to Northern Argentina.[11] It is now widespread throughout the tropics[3] and is a serious weed in Africa, India, South-East Asia and some pacific islands.[8]

Distribution in Australia

Since the 1950s, Mimosa pigra has spread to some of the main river systems in the Top End. It is currently present as far as the Victoria River in the west and the Phelp River (in Arnhem Land) in the east. A mimosa outbreak was discovered near Proserpine, Queensland in February 2001.[8]

Habitat

Mimosa pigra favours wet dry tropical climate. It does not appear to grow preferentially in any one soil type, but is most commonly found in moist situations such as floodplains and river banks in soils ranging from black cracking clays throughout sandy clays to coarse siliceous river sand.[8][12]
In northern Australia Mimosa pigra invades sedgeland and grassland communities on open floodplains, particularly in areas where feral buffalo have removed the vegetation. It forms dense, practically monospecific tall shrubland in which the ground flora is sparse to non-existent. Similarly, it invades the paperbark (Melaleuca spp.) swamp forests fringing the floodplains, where it forms a dense understorey, and shades out native tree seedlings.[13]

Importance

Detrimental

Mimosa pigra is a noxious weed, which has received international recognition because of its existing and potential impact on biological diversity. In Australia it further affects traditional and non-traditional land use, and the sustainability of agriculture and tourism.[4]
Currently, Mimosa pigra has replaced over 80,000 hectares of native vegetation on wetlands in northern Australia.[4] It was further found that Mimosa pigra thickets had fewer birds and lizards, less herbaceous vegetation, and fewer tree seedlings than the native vegetation.[13] Furthermore, it is also probable that the magpie goose (Anseranas semipalmata (Latham)) is endangered by the spread of this weed, since it needs dense stands of native sedges for nesting and food. Conversely, the rare marsupial mouse Sminthopsis virginiae (Tarragon) had become more abundant as a result of Mimosa pigra.[13] It is probable that other species have been affected as well.
Traditional methods of food-gathering by Aborigines are threaten by the weed through its effects on the fauna and flora of the wetlands, which are otherwise rich in traditional food such as fish, turtles and water birds.[3][4] Sacred sites and sites of cultural significance have also been affected.
The dense thickets, by competing with pastures, hindering mustering, and preventing access to water, are a threat to pastoral industries, particularly the buffalo industry, in Australia.[14] Hence, Mimosa pigra affects the pastoral industry through reduced grazing and water resources and increased difficulties in stock management, infrastructure maintenance and feral animal control.[4] Tourism is also affected through reduced area and access for tourism activities, reduced wildlife attractions and reduced access to fishing, hunting and scenic areas.[4]

Beneficial

Despite its detrimental impacts, Mimosa pigra does have uses. It has been of botanical interest since the 19th century, which led to its introduction and cultivation in botanic gardens outside of its native range. Mimosa fixes nitrogen and, in areas of Australia where it grows profusely, it increases soil fertility and redistributes nutrients from the lower soil profile to the surface. This may be beneficial for establishing vegetation after clearing Mimosa. It is used for firewood, bean-poles and as temporary fences, and has been tested as a medium for growing mushrooms. The harvest of Mimosa to extract vegetable tannins and to provide biomass to generate electricity has been proposed under controlled conditions.[15]

Control in Australia

In Australia, Mimosa pigra has been declared a noxious weed or given similar status under various weed or quarantine Acts.[3] Effective control of Mimosa has been difficult because of the extent of infestations, the aggressive nature of the plant and the type of terrain where it occurs.[16]

Fire

Because of its little grassy understorey in thickets of M. pigra, it is difficult to destroy infestations with fire. Burning does not prevent resprouting of plants and kills only surface seeds, not buried ones. It may stimulate seed germination due to the removal of seed coats.[17] Mimosa pigra seedlings are susceptible to competition from grasses.[18] Hence, Miller[19] has argued that by using herbicides to open the canopy and allow herbaceous vegetation to regrow, fire can then be employed to clear infested areas, with subsequent sowing of competitive pasture species to suppress regeneration from seed.[3]

Chemical control

Herbicides are widely used to control Mimosa, especially in Australia. Herbicide should be applied during the active period of growth of the mimosa and before any seed mature (which in Australia is during the wet season).[18] The height and density of Mimosa may hinder access, resulting in the need for aerial spraying. However, this increases the risk posed by herbicide drift to non-target plants in the vicinity.[20]

Biological control

Miller[14] recognized that biological control would be the most cost-effective and long-term control method for Mimosa pigra.[3] Over the last 19 years, 11 insect and 2 fungal species have been released as biological control agents against mimosa.[20] Six biological control agents are currently established on mimosa in Australia: the twig and stem-mining moths Neurostrota gunniella Busck and Carmenta mimosa Eichlin & Passoa cause stem and branch death and induce leaf-drop (both were first released in 1989), the flower-weevil Coelocephalapion pigrae Kissinger (released in 1994), and the seed-feeding bruchid Acanthoscelides puniceus Johnson (released in 1983) are relatively widespread. Chlamisus mimosae Karren, a leaf-feeding chrysomelid that was released in 1985 only established on the Finniss River catchment where it inflicts minor damage.[21] The chrysomelid, Malacorhinus irregularis Jacoby, first released in 2000, was released at Beatrice Lagoon in 2001 and established there during the course of recent research [22] Three species have only recently been released, the leaf-feeding looper, Macaria pallidata Warren, first released in July 2002, and the two seed-feeding weevils, Chalcodermus serripes Fahraeus and Sibinia fastigiata Clark. Although the latter were, respectively, first released in 1996 and 1997, difficulties mass-rearing these species prevented large-scale field releases from being made until more recently.[20]
Four species have apparently failed to establish and/or persist: both pathogens, Phloeospora mimosae-pigrae Evans and Carion and Diabole cubensis (Arthur & J.R. Johnst.); the flower-feeding beetle Coelocephalapion aculeatum Fall; and the seed-feeding bruchid Acanthoscelides quadridentatus Schaeffer.[20]

In the long term biocontrol on its own offers the only cost-effective control option for treating very large infestations of mimosa because of the high costs of chemicals, machinery and labour. However, the present biocontrol agents are very slow acting and may provide effective control only after several decades. If more rapid treatment is required, biocontrol should be used in conjunction with mechanical and chemical methods as part of an integrated management plan.[8]

References

  1. ^ http://www.issg.org/database/species/search.asp?st=100ss&fr=1&sts=sss
  2. ^ http://www.issg.org/database/species/ecology.asp?si=41&fr=1&sts=sss
  3. ^ a b c d e f g h i j k l m n o p q Lonsdale W.M., Miller I.L., Forno I.W. (1995). Mimosa pigra. pp. 169–188.  In In Groves R.H., Sheppard R.C.H., Richardson R.G. The biology of Australian weeds R.G. and F.J. Richardson Publishers, Melbourne, Australia.
  4. ^ a b c d e f g h Agriculture & Resource Management Council of Australia & New Zealand, Australian & New Zealand Environment & Conservation Council and Forestry Ministers (2000). "Weeds of National Significance Mimosa (mimosa pigra) Strategic Plan.". National Weeds Strategy Executive Committee, Launceston. http://www.weeds.gov.au/publications/guidelines/wons/m-pigra.html. Retrieved 2006-05-13. 
  5. ^ Linnaeus C. (1759). Amoenitates. IV. pp. 274–275.  In: Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  6. ^ Linnaeus C. (1759). Systema Naturae. II. p. 1312.  In: Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  7. ^ a b c d e f Agnote. 466. No. F2. August 2001. Agdex No: 643. ISSN No: 0157-8243. Mimosa or Giant Sensitive Plant (Mimosa pigra). I. L. Miller and S. E. Pickering, updated by C. S. Smith and I.L. Miller Weeds Branch
  8. ^ a b c d e f g "Weed Management Guide: Mimosa (Mimosa pigra)". Australian Government Department of the Environment, Water, Heritage and the Arts. http://www.weeds.gov.au/publications/guidelines/wons/m-pigra.html. Retrieved 2008-05-10. 
  9. ^ Miller I.L. and Lonsdale W.M. (1987). "Early records of ‘’Mimosa pigra’’ in the Northern Territory.". Plant Protection Quarterly 2: 140–142.  Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  10. ^ Lonsdale W.M. (1993). "Rates of spread of an invading species: Mimosa pigra in northern Australia". Journal of Ecology 81 (3): 513–521. doi:10.2307/2261529. JSTOR 2261529. 
  11. ^ Walden, D., Finlayson, C.M., van Dam, R. and Storrs, M. (1999). "Information for a risk assessment and management of Mimosa pigra in Tram Chim National Park, Vietnam". In: Proceedings of the EnviroTox'99 International Conference: 160–170.  In: Global Invasive Species Database, 2005. ‘Mimosa pigra.’ Available from: http://www.issg.org/database/species/ecology.asp?si=41&fr=1&sts=sss&lang=EN
  12. ^ Lonsdale, W.M. (1988). "Litterfall in an Australian population of Mimosa pigra, an invasive tropical shrub". Journal of Tropical Ecology 4 (4): 381–392. doi:10.1017/S0266467400003035.  Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  13. ^ a b c Braithwaite R.W., Lonsdale W.M. and Estbergs J.A. (1989). "Alien vegetation and native biota in tropical Australia: the spread and impact of Mimosa pigra". Biological Conservation 48 (3): 189–210. doi:10.1016/0006-3207(89)90118-3.  Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  14. ^ a b Miller I.L., Nemestothy L. and Pickering S.E. (1981). "Mimosa pigra in the Northern Territory". Department of Primary Production, Division of Agriculture and stock, Technical Bulletin No.51.  In: Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  15. ^ Miller, I.L. (2002-09-22/25). "Uses for Mimosa pigra". 3rd International Symposium on the Management of Mimosa pigra. Darwin, Australia: Research and management of Mimosa pigra. 
  16. ^ "‘Managing invasive species in Australia: Success stories - Biological control of Mimosa". Australian Government Department of the Environment, Water, Heritage and the Arts. 2004. http://www.weeds.gov.au/publications/brochures/success-m-pigra.html. Retrieved 2008-05-10. 
  17. ^ Walden, D., Finlayson, C.M., van Dam, R. and Storrs, M. (1999). "Information for a risk assessment and management of Mimosa pigra in Tram Chim National Park, Vietnam". In: Proceedings of the EnviroTox'99 International Conference: 160–170.  In: Global Invasive Species Database, 2005. ‘Mimosa pigra.’ Available from: http://www.issg.org/database/species/reference_files/mimpig/Control_Mimosa_pigra.pdf
  18. ^ a b Miller I.L. (1992). "Competition between Brachiaria humidiocola and Mimosa pigra". Tropical Grasslands 26: 111–114.  Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  19. ^ Miller I.L. (1988). The Northern Territory Noxious Weeds Act. Agnote No.251. Department of Industries and Development, Northern Territory.  Lonsdale W.M., Miller I.L., Forno I.W. (1995). ‘Mimosa pigra L’. In: Groves R.H., Sheppard R.C.H., Richardson R.G. (eds) ‘The biology of Australian weeds’. R.G. and F.J. Richardson Publishers, Melbourne, Australia, pp 169–188.
  20. ^ a b c d Paynter, Quentin (2006). "Evaluating the impact of biological control against Mimosa pigra in Australia: Comparing litterfall before and after the introduction of biological control agents". Biological Control 38 (2): 166–173. doi:10.1016/j.biocontrol.2005.11.003. 
  21. ^ Wilson C.G. and Forno I.W (1995). The biological control program against Mimosa pigra in Australia's Northern territory. In: DelfosseE.S., Scott, R.R. (Eds.), Proceedings of the VIII International Symposium on Biological Control of Weeds, 2–7 February 1995. Lincoln University, Canterbury, New Zealand, pp. 75–80.  In: Paynter Q. ‘Evaluating the impact of biological control against Mimosa pigra in Australia: Comparing litterfall before and after the introduction of biological control agents.’ Biological Control 38 (2006) 166–173
  22. ^ Heard T.A., Paynter Q., Chan R., Mira A. (2004). "Malacorhinus irregularis for biocontrol of Mimosa pigra: host-specificity, life cycle and establishment in Australia". Biological Control 32: 252–262.  In: In: Paynter Q. ‘Evaluating the impact of biological control against Mimosa pigra in Australia: Comparing litterfall before and after the introduction of biological control agents.’ Biological Control 38 (2006) 166–173

See also